Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38067568

RESUMO

The present study was intended for the identification of secondary metabolites in acetone extract of the lichen Hypotrachyna cirrhata using UPLC-ESI-QToF-MS/MS and the detection of bioactive compounds. This study led to the identification of 22 metabolites based on their MS/MS spectra, accurate molecular masses, molecular formula from a comparison of the literature database (DNP), and fragmentation patterns. In addition, potent antioxidant and α-glucosidase inhibitory potentials of acetone extract of H. cirrhata motivated us to isolate 10 metabolites, which were characterized as salazinic acid (11), norlobaridone (12), atranorin (13), lecanoric acid (14), lichesterinic acid (15), protolichesterinic acid (16), methyl hematommate (17), iso-rhizonic acid (18), atranol (19), and methylatratate (20) based on their spectral data. All these isolates were assessed for their free radicals scavenging, radical-induced DNA damage, and intestinal α-glucosidase inhibitory activities. The results indicated that norlobaridone (12), lecanoric acid (14), methyl hematommate (17), and atranol (19) showed potent antioxidant activity, while depsidones (salazinic acid (11), norlobaridone (12)) and a monophenolic compound (iso-rhizonic acid, (18)) displayed significant intestinal α-glucosidase inhibitory activities (p < 0.001), which is comparable to standard acarbose. These results were further correlated with molecular docking studies, which indicated that the alkyl chain of norlobaridione (12) is hooked into the finger-like cavity of the allosteric pocket; moreover, it also established Van der Waals interactions with hydrophobic residues of the allosteric pocket. Thus, the potency of norlobaridone to inhibit α-glucosidase enzyme might be associated with its allosteric binding. Also, MM-GBSA (Molecular Mechanics-Generalized Born Surface Area) binding free energies of salazinic acid (11) and norlobaridone (12) were superior to acarbose and may have contributed to their high activity compared to acarbose.


Assuntos
Antioxidantes , Líquens , Antioxidantes/química , Líquens/metabolismo , Acarbose , alfa-Glucosidases/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem , Acetona , Inibidores de Glicosídeo Hidrolases/química
2.
Front Fungal Biol ; 4: 1088966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746133

RESUMO

Tridepsides, as fully oxidized polyketides, have been known to exist in lichens for more than a century. Recent studies have showed that these possible defensive lichenochemicals possess various biological activities. Also, a candidate biosynthetic gene cluster was recently reported for gyrophoric acid (GA), an important tridepside. The present study focused on biosynthesis, natural sources, biological activities, and bioanalytical methods of tridepside molecules. Our survey shows that, so far, lichenic tridepsides have been reported from 37 families, 111 genera, and 526 species of lichen. Because many of their species contain tridepsides, the families Parmeliaceae, Lobariaceae, and Peltigeraceae can be considered critical lichenic sources of tridepsides. Furthermore, several species of Hypotrachyna in Parmeliaceae family showed lichenic tridepsides, suggesting that this genus is a viable source of tridepsides. This research also explored tridepsides from non-lichenic sources, such as non-lichenized fungi, lichenicolous fungi, endophytes, parasites, and liverworts, which offer substantial potential as biotechnological sources to produce tridepsides, which are produced in small amounts in lichen thalli. Two lichenic tridepsides have also been detected in non-lichenic sources: GA and tenuiorin (TE). Additionally, no significant correlation was found between tridepside biosynthesis and geographical distribution patterns for several potentially tridepside-producing lichens. We further showed that GA is the most studied tridepside with various reported biological activities, including anticancer, wound healing, photoprotection, anti-aging, antioxidant, cardiovascular effect, DNA interaction, anti-diabetes, anti-Alzheimer's, anti-bacterial, and antifungal. Last but not least, this study provides an overview of some bioanalytical methods used to analyze tridepsides over the past few years.

3.
Viruses ; 15(9)2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37766264

RESUMO

(1) Background: Since the emergence of SARS-CoV-2, responsible for the COVID-19 pandemic, efforts have been made to identify antiviral compounds against human coronaviruses. With the aim of increasing the diversity of molecule scaffolds, 42 natural compounds, of which 28 were isolated from lichens and 14 from their associated microorganisms (bacteria and fungi), were screened against human coronavirus HCoV-229E. (2) Methods: Antiviral assays were performed using HCoV-229E in Huh-7 and Huh-7/TMPRSS2 cells and SARS-CoV-2 in a Vero-81-derived clone with a GFP reporter probe. (3) Results: Four lichen compounds, including chloroatranol, emodin, perlatolic acid and vulpinic acid, displayed high activities against HCoV-229E (IC50 = 68.86, 59.25, 16.42 and 14.58 µM, respectively) and no toxicity at active concentrations. Kinetics studies were performed to determine their mode of action. The four compounds were active when added at the replication step. Due to their significant activity, they were further tested on SARS-CoV-2. Perlatolic acid was shown to be active against SARS-CoV-2. (4) Conclusions: Taken together, these results show that lichens are a source of interesting antiviral agents against human coronaviruses. Moreover, perlatolic acid might be further studied for its pan-coronavirus antiviral activity.


Assuntos
COVID-19 , Coronavirus Humano 229E , Líquens , Humanos , Pandemias , SARS-CoV-2 , Antivirais/farmacologia
4.
Molecules ; 27(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36235256

RESUMO

In this study, we propose ultra-performance liquid chromatography coupled with quadrupole/time-of-flight mass spectrometry (UPLC-QToF-MS/MS)-guided metabolite isolation as a choice analytical approach to the ongoing structure−activity investigations of chemical isolates from the edible lichen, Ramalina conduplicans Vain. This strategy led to the isolation and identification of a new depside (5) along with 13 known compounds (1−4, 6−14), most of which being newly described in this lichen species. The structures of the isolates were established by detailed analysis of their spectral data (IR, NMR, and Mass). The acetone extract was further analyzed by UPLC-Q-ToF-MS/MS in a negative ionization mode, which facilitated the identification and confirmation of 18 compounds based on their fragmentation patterns. The antioxidant capacities of the lichen acetone extract (AE) and isolates were measured by tracking DPPH and ABTS free radical scavenging activities. Most isolates displayed marked radical scavenging activities against ABTS while moderate activities were observed against DPPH radical scavenging. Except for atranol (14), oxidative DNA damage was limited by all the tested compounds, with a marked protection for the novel isolated compound (5), as previously noted for the acetone extract (p < 0.001). Furthermore, compound (4) and acetone extract (AE) have inhibited intestinal α-glucosidase enzyme significantly (p < 0.01). Although some phytochemical studies were already performed on this lichen, this study provided new insights into the isolation and identification of bioactive compounds, illustrating interest in future novel analytical techniques.


Assuntos
Antioxidantes , Espectrometria de Massas em Tandem , Acetona , Antioxidantes/química , Ascomicetos , Cromatografia Líquida de Alta Pressão/métodos , Depsídeos/análise , Radicais Livres , Hipoglicemiantes , Compostos Fitoquímicos/análise , Extratos Vegetais/química , alfa-Glucosidases
5.
J Fungi (Basel) ; 8(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36012814

RESUMO

We used molecular data to address species delimitation in a species complex of the parmelioid genus Canoparmelia and compare the pharmacological properties of the two clades identified. We used HPLC_DAD_MS chromatography to identify and quantify the secondary substances and used a concatenated data set of three ribosomal markers to infer phylogenetic relationships. Some historical herbarium specimens were also examined. We found two groups that showed distinct pharmacological properties. The phylogenetic study supported the separation of these two groups as distinct lineages, which are here accepted as distinct species: Canoparmelia caroliniana occurring in temperate to tropical ecosystems of a variety of worldwide localities, including America, Macaronesia, south-west Europe and potentially East Africa, whereas the Kenyan populations represent the second group, for which we propose the new species C. kakamegaensis Garrido-Huéscar, Divakar & Kirika. This study highlights the importance of recognizing cryptic species using molecular data, since it can result in detecting lineages with pharmacological properties previously overlooked.

6.
Phytochem Anal ; 33(7): 1111-1120, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35789004

RESUMO

INTRODUCTION: In recent years, LC-MS has become the golden standard for metabolomic studies. Indeed, LC is relatively easy to couple with the soft electrospray ionization. As a consequence, many tools have been developed for the structural annotation of tandem mass spectra. However, it is sometimes difficult to do data-dependent acquisition (DDA), especially when developing new methods that stray from the classical LC-MS workflow. OBJECTIVE: An old tool from petroleomics that has recently gained popularity in metabolomics, the Van Krevelen diagram, is adapted for an overview of the molecular diversity profile in lichens through high-resolution mass spectrometry (HRMS). METHODS: A new method is benchmarked against the state-of-the-art classification tool ClassyFire using a database containing most known lichen metabolites (n ≈ 2,000). Four lichens known for their contrasted chemical composition were selected, and extractions with apolar, aprotic polar, and protic polar solvents were performed to cover a wide range of polarities. Extracts were analyzed with direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) and atmospheric solids analysis probe mass spectrometry (ASAP-MS) techniques to be compared with the chemical composition described in the literature. RESULTS: The most common lichen metabolites were efficiently classified, with more than 90% of the molecules in some classes being matched with ClassyFire. Results from this method are consistent with the various extraction protocols in the present case study. CONCLUSION: This approach is a rapid and efficient tool to gain structural insight regarding lichen metabolites analyzed by HRMS without relying on DDA by LC-MS/MS analysis. It may notably be of use during the development phase of novel MS-based metabolomic approaches.


Assuntos
Líquens , Cromatografia Líquida/métodos , Líquens/química , Metabolômica/métodos , Extratos Vegetais , Solventes , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos
7.
Phytochem Anal ; 33(7): 1028-1035, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35753311

RESUMO

INTRODUCTION: Lichens contain unique metabolites that most often need to be characterized from a limited amount of material. While thin layer chromatography is still the preferred analysis method for most lichenologists, liquid chromatography gives a deeper insight in the lichen metabolome, but an extractive step is needed before any analysis. Therefore, ambient ionization mass spectrometry (MS) analysis of lichen samples using Atmospheric Solid Analysis Probe (ASAP) and Direct Acquisition in Real Time (DART) techniques is evaluated. OBJECTIVE: We looked for a faster method to screen the metabolome by disrupting the classical workflow of analysis. METHODS: Four lichens selected for their metabolic diversity were analyzed with MS; namely Evernia prunastri, Lichina pygmaea, Parmelia saxatilis, and Roccella fuciformis. ASAP and DART analyses were compared against the reference electrospray ionization with a bioinformatic process including Van Krevelen diagrams as well as the multivariate comparison of the ionization methods in positive and negative modes. RESULTS: Metabolite profiles obtained from DART and ASAP analyses of lichen samples are consistent with classical analyses of lichen extracts. Through an easy and rapid experiment and without any extraction solvent, a large and informative profile of lichen metabolites is obtained when using complementary ionization modes of these high resolution mass spectrometry methods. CONCLUSION: ASAP-MS and DART-MS are two ancillary methods that provide a comprehensive evaluation of the lichen metabolome.


Assuntos
Líquens , Líquens/química , Espectrometria de Massas/métodos , Metaboloma , Extratos Vegetais , Solventes
8.
J Org Chem ; 86(9): 6390-6405, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33877829

RESUMO

Nature offers a huge diversity of glycosidic derivatives. Among numerous structural modulations, the nature of the ring size of hexosides may induce significant differences on both biological and physicochemical properties of the glycoconjugate of interest. On this assumption, we expect that small disaccharides bearing either a furanosyl entity or a pyranosyl residue would give a specific signature, even in the gas phase. On the basis of the scope of mass spectrometry, two analytical techniques to register those signatures were considered, i.e., the ion mobility (IM) and the infrared multiple photon dissociation (IRMPD), in order to build up cross-linked databases. d-Galactose occurs in natural products in both tautomeric forms and presents all possible regioisomers when linked to d-mannose. Consequently, the four reducing Galf-Manp disaccharides as well as the four Galp-Manp counterparts were first synthesized according to a highly convergent approach, and IM-MS and IRMPD-MS data were second collected. Both techniques used afforded signatures, specific to the nature of the connectivity between the two glycosyl entities.


Assuntos
Dissacarídeos , Galactose , Glicosídeos , Manose , Espectrometria de Massas
9.
Planta Med ; 87(9): 701-708, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33618379

RESUMO

Protein tyrosine phosphatase 1B plays a significant role in type 2 diabetes mellitus and other diseases and is therefore considered a new drug target. Within this study, an acetone extract from the lichen Stereocaulon evolutum was identified to possess strong protein tyrosine phosphatase 1B inhibition in a cell-free assay (IC50 of 11.8 µg/mL). Fractionation of this bioactive extract led to the isolation of seven known molecules belonging to the depsidones and the related diphenylethers and one new natural product, i.e., 3-butyl-3,7-dihydroxy-5-methoxy-1(3H)-isobenzofurane. The isolated compounds were evaluated for their inhibition of protein tyrosine phosphatase 1B. Two depsidones, lobaric acid and norlobaric acid, and the diphenylether anhydrosakisacaulon A potently inhibited protein tyrosine phosphatase 1B with IC50 values of 12.9, 15.1, and 16.1 µM, respectively, which is in the range of the protein tyrosine phosphatase 1B inhibitory activity of the positive control ursolic acid (IC50 of 14.4 µM). Molecular simulations performed on the eight compounds showed that i) a contact between the molecule and the four main regions of the protein is required for inhibitory activity, ii) the relative rigidity of the depsidones lobaric acid and norlobaric acid and the reactivity related to hydrogen bond donors or acceptors, which interact with protein tyrosine phosphatase 1B key amino acids, are involved in the bioactivity on protein tyrosine phosphatase 1B, iii) the cycle opening observed for diphenylethers decreased the inhibition, except for anhydrosakisacaulon A where its double bond on C-8 offsets this loss of activity, iv) the function present at C-8 is a determinant for the inhibitory effect on protein tyrosine phosphatase 1B, and v) the more hydrogen bonds with Arg221 there are, the more anchorage is favored.


Assuntos
Ascomicetos , Inibidores Enzimáticos , Líquens , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Ascomicetos/química , Diabetes Mellitus Tipo 2 , Inibidores Enzimáticos/farmacologia , Líquens/química
11.
Planta Med ; 86(16): 1216-1224, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32819010

RESUMO

Three new depsidones, parmosidones F - G (1 - 2), and 8'-O-methylsalazinic acid (3), and 3 new diphenylethers, parmetherines A - C (4 - 6), together with 2 known congeners were isolated from the whole thalli of Parmotrema dilatatum, a foliose chlorolichen. Their structures were unambiguously determined by extensive spectroscopic analyses and comparison with literature data. The isolated polyphenolics were assayed for their α-glucosidase inhibitory activities. Newly reported benzylated depsidones 1: and 2: in particular inhibited α-glucosidase with IC50 values of 2.2 and 4.3 µM, respectively, and are thus more potent than the positive control, acarbose.


Assuntos
Líquens , alfa-Glucosidases , Depsídeos , Inibidores de Glicosídeo Hidrolases/farmacologia , Lactonas , Extratos Vegetais/farmacologia , Salicilatos
12.
Environ Sci Pollut Res Int ; 27(32): 40296-40308, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32661964

RESUMO

In the present study, we characterized the phytochemical properties, which were specifically associated with phenolic compounds and antioxidant activities in six distinct ecotypes of Umbilicaria aprina Nyl. from Iran (including Kivarestan, Mishan, Takht-e Nader, Tochal, Sabalan, and Sahand) to detect diversities within the species. Total phenolic concentration (TPC) and radical scavenging capacities of U. aprina ecotypes were evaluated. Moreover, qualitative differences between chemical profiles were surveyed using liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS). Relatively moderate TPCs (Kivarestan = 36.12 ± 2.1, Mishan = 41.59 ± 2.2, Takht-e Nader = 31.85 ± 1.3, Tochal = 37.55 ± 2.3, Sabalan = 28.91 ± 2.5, and Sahand = 31.59 ± 2.2) were observed for ecotypes, but a very strong correlation (r = -0/842) was obtained between TPCs and IC50 values. Based on the results of LC-ESI-MS/MS, the following chemical substances were identified: orsellinic acid (1), lecanoric acid (2), evernic acid (3), gyrophoric acid (4), umbilicaric acid (5), hiascic acid (6), stictic acid (7) methyl hiascic acid (8), and an unknown substance (9). The MS/MS fragmentation scheme for each substance was determined and proposed. Wide discrepancies were observed in the chemical profiles of lichen ecotypes, which may corroborate the influence of ecological locality conditions, for example, altitude and slope aspects on secondary metabolism of lichen species U. aprina. The north-facing and east-facing ecotypes (Sabalan and Mishan, respectively) lacked depsidones (stictic acid) mainly because they receive the least direct radiation. Mishan ecotype, as the only east-facing ecotype, showed the most different chemical profile.


Assuntos
Antioxidantes , Líquens , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Ecótipo , Irã (Geográfico) , Espectrometria de Massas por Ionização por Electrospray , Inquéritos e Questionários , Espectrometria de Massas em Tandem
13.
Plants (Basel) ; 9(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935813

RESUMO

Lichens are slow-growing organisms supposed to synthetize specialized metabolites to protect themselves against diverse grazers. As predicted by the optimal defense theory (ODT), lichens are expected to invest specialized metabolites in higher levels in reproductive tissues compared to thallus. We investigated whether Laser Desorption Ionization coupled to Mass Spectrometry Imaging (LDI-MSI) could be a relevant tool for chemical ecology issues such as ODT. In the present study, this method was applied to cross-sections of thalli and reproductive tissues of the lichen Pseudocyphellaria crocata. Spatial mapping revealed phenolic families of metabolites. A quantification of these metabolites was carried out in addition to spatial imaging. By this method, accumulation of specialized metabolites was observed in both reproductive parts (apothecia and soralia) of P. crocata, but their nature depended on the lichen organs: apothecia concentrated norstictic acid, tenuiorin, and pulvinic acid derivatives, whereas soralia mainly contained tenuiorin and pulvinic acid. Stictic acid, tenuiorin and calycin, tested in no-choices feeding experiments, were deterrent for N. hookeri while entire thalli were consumed by the snail. To improve better knowledge in relationships between grazed and grazing organisms, LDI-MSI appears to be a complementary tool in ecological studies.

14.
J Asian Nat Prod Res ; 22(10): 976-988, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31242773

RESUMO

Bioassay-guided separation of acetone extract from lichen Parmotrema tinctorum (Delise ex Nyl.) Hale led to the isolation of six major phenolic constituents (1-6). Compounds structures were established using NMR and mass spectral techniques. Further, to develop libraries on these scaffolds, a series of semi-synthetic derivatives were prepared (1a-1f, 2a-2b, 3a, 5a) and investigated for their free-radicals (2,2-diphenyl-1-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS)) scavenging and advanced glycation end products (AGEs) formation inhibitory activities. Amongst tested derivatives, 1a, 1d, 1e, 2a, and 5a showed strong ABTS scavenging potentials comparable to Trolox. In addition, these derivatives also manifested moderate AGEs formation inhibitory activities. [Formula: see text].


Assuntos
Antioxidantes , Líquens , Produtos Finais de Glicação Avançada , Estrutura Molecular , Fenóis , Extratos Vegetais
15.
Fitoterapia ; 141: 104449, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31816345

RESUMO

Three new xanthone dimers, eumitrins C - E (1-3), along with a new depsidone, 3'-O-demethylcryptostictinolide (4) were isolated from the acetone extract of the whole thallus of the lichen Usnea baileyi collected in Vietnam. Their structures were unambiguously established by spectroscopic analyses (HRESIMS, 1D and 2D NMR), as well as comparison to literature data. The absolute configurations of 1-3 were elucidated through electronic circular dichroism (ECD) analyses. The absolute configuration of 2 was validated by comparison between experimental and TDDFT-calculated ECD spectra while that of 3 was based on DFT-NMR calculations and subsequent DP4 probability score. The antiparasitic activities against Plasmodium falciparum as well as the cytotoxic activity against seven cell lines were determined for the new compounds 1-3, and led from null to mild bioactivities.


Assuntos
Extratos Vegetais/química , Usnea/química , Xantonas/química , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Extratos Vegetais/isolamento & purificação , Vietnã
16.
Sci Data ; 6(1): 294, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31780665

RESUMO

While analytical techniques in natural products research massively shifted to liquid chromatography-mass spectrometry, lichen chemistry remains reliant on limited analytical methods, Thin Layer Chromatography being the gold standard. To meet the modern standards of metabolomics within lichenochemistry, we announce the publication of an open access MS/MS library with 250 metabolites, coined LDB for Lichen DataBase, providing a comprehensive coverage of lichen chemodiversity. These were donated by the Berlin Garden and Botanical Museum from the collection of Siegfried Huneck to be analyzed by LC-MS/MS. Spectra at individual collision energies were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/MTBLS999) while merged spectra were uploaded to the GNPS platform (CCMSLIB00004751209 to CCMSLIB00004751517). Technical validation was achieved by dereplicating three lichen extracts using a Molecular Networking approach, revealing the detection of eleven unique molecules that would have been missed without LDB implementation to the GNPS. From a chemist's viewpoint, this database should help streamlining the isolation of formerly unreported metabolites. From a taxonomist perspective, the LDB offers a versatile tool for the chemical profiling of newly reported species.


Assuntos
Bases de Dados Factuais , Líquens/química , Metabolômica , Espectrometria de Massas em Tandem
17.
Molecules ; 24(12)2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216770

RESUMO

Considering the importance of ultra-performance liquid chromatography-electrospray ionization-quadrupole time of flight-tandem mass spectrometry (UPLC-ESI-QTOF-MS/MS) hyphenated techniques for analysis of secondary metabolites from crude extracts, the present study was aimed at identification of secondary metabolites in acetone extract of the lichen Usnea longissima. From our study, 19 compounds were tentatively identified through comparison of exact molecular masses from their MS/MS spectra, mass fragmentation studies and comparison with literature data. In addition, potent cytotoxic activity of U. longissima extract prompted us to isolate four compounds, 18R-hydroxy-dihydroalloprotolichesterinic acid (19), neuropogolic acid (20), barbatic acid (21), and usnic acid (22) from this extract which were adequately identified through mass spectrometry and NMR spectroscopy. All four compounds displayed cytotoxic activity. Barbatic acid (21) manifested doxorubicin equivalent activity against A549 lung cancer cell line with IC50 of 1.78 µM and strong G0/G1 accumulation of cells. Poly ADP-ribose polymerase (PARP) cleavage confirmed that it induced cytotoxic activity via apoptosis. Finally, our work has discerned the depside, barbatic acid (21) from crude extract as a candidate anti-cancer molecule, which induces cell death by stepping up apoptosis.


Assuntos
Ascomicetos/efeitos dos fármacos , Ascomicetos/metabolismo , Cromatografia Líquida de Alta Pressão , Metabolômica , Ácidos Ftálicos/farmacologia , Metabolismo Secundário , Espectrometria de Massas por Ionização por Electrospray , Acetona , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida de Alta Pressão/métodos , Relação Dose-Resposta a Droga , Humanos , Metabolômica/métodos , Conformação Molecular , Estrutura Molecular , Ácidos Ftálicos/química , Espectrometria de Massas por Ionização por Electrospray/métodos
18.
Phytochemistry ; 164: 86-93, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31102999

RESUMO

Specialised metabolites in lichens are generally considered repellent compounds by consumers. Nevertheless, if the only food available is lichens rich in specialised metabolites, lichenophages must implement strategies to overcome the toxicity of these metabolites. Thus, the balance between phagostimulant nutrients and deterrent metabolites could play a key role in feeding preferences. To further understand lichen-gastropod interactions, we studied the feeding behaviour and consumption in Notodiscus hookeri, the land snail native to sub-Antarctic islands. The lichen Usnea taylorii was used because of its simple chemistry, its richness in usnic acid (specialised metabolite) and arabitol (primary metabolite) and its presence in snail habitats. Choice tests in arenas with intact lichens versus acetone-rinsed lichens were carried out to study the influence of specialised metabolites on snail behaviour and feeding preference. Simultaneously, usnic acid and arabitol were quantified and located within the lichen thallus using HPLC-DAD-MS and in situ imaging by mass spectrometry to assess whether their spatial distribution explained preferential snail grazing. No-choice feeding experiments, with the pure metabolites embedded in an artificial diet, defined a gradual gustatory response, from strong repellence (usnic acid) to high appetence (D-arabitol). This case study demonstrates that the nutritional activity of N. hookeri is governed by the chemical quality of the food and primarily by nutrient availability (arabitol), despite the presence of deterrent metabolite (usnic acid).


Assuntos
Benzofuranos/metabolismo , Caramujos/metabolismo , Álcoois Açúcares/metabolismo , Usnea/metabolismo , Animais , Benzofuranos/química , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Caramujos/química , Álcoois Açúcares/química , Usnea/química
19.
Molecules ; 24(8)2019 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-31003403

RESUMO

A phytochemical investigation of the foliose lichen Parmotrema tsavoense (Krog and Swinscow) Krog and Swinscow (Parmeliaceae) resulted in the isolation of a new trichlorinated xanthone, isodemethylchodatin. The structure elucidation of this new norlichexanthone derivative proved tricky owing to proton deficiency, and to the lack of NMR data of closely related analogues. The structure of this compound was determined based on an integrated interpretation of 13C-NMR chemical shifts, MS spectra, and DP4-based computational chemistry was also performed to provide an independent and unambiguous validation of the determined structure. Isodemethylchodatin represents the first chlorinated lichexanthone/norlichexanthone derivative bearing a methoxy group at C-5.


Assuntos
Hidrogênio/química , Líquens/química , Xantonas/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Espectroscopia de Prótons por Ressonância Magnética , Estereoisomerismo
20.
Fitoterapia ; 135: 44-51, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30995563

RESUMO

The phytochemical investigation of Euphorbia tirucalli L. (Euphorbiaceae) yielded four new compounds, including a rare cadalene-type sesquiterpene (tirucadalenone), two tirucallane triterpenoids, euphorol L and euphorol M, with the latter being described as an epimeric mixture, and a euphane triterpene, namely, euphorol N, together with 7 known compounds. Their structures and absolute configurations were elucidated from analysis of 1D (1H, J-modulated 13C) and 2D NMR (HSQC, HMBC and NOESY), high-resolution mass spectrometry (HRESIMS), optical rotation, and GIAO NMR shift calculation followed by CP3 analysis, along with comparison with literature reports. All these compounds were tested for cytotoxicity against K562, MCF-7 and/or and HepG2 tumor cell lines. Only tirucadalenone displayed a mild cytotoxic activity.


Assuntos
Euphorbia/química , Compostos Fitoquímicos/química , Terpenos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Terpenos/isolamento & purificação , Terpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...